MATH 513 EXAM II

This exam is worth 100 points, with each problem worth 20 points. There are problems on both sides of the page. Please complete Problem 1 and then any four of the remaining problems. Unless indicated, you must justify your answer to receive credit for a solution; correct answers alone are not necessarily sufficient for credit.

When submitting your exam, please indicate which problems (including Problem 1) you want graded by writing them in the upper right corner on the cover of your exam booklet. You must select exactly five problems; any unselected problems will not be graded, and if you select more than five only the first five (in numerical order) will be graded. You may use a calculator to assist with arithmetic. You can only use the basic functions $(+, -, \times, /, =, \text{memory})$ of the calculator; no advanced functions/programming is allowed. No phones, smartwatches, or other devices with connectivity can be used during the exam. The notation [n] means the finite set $\{1, \ldots, n\}$. Unless requested, answers may be left in symbolic form.

- (1) (20 pts) **True/False.** Please classify the following statements as *True* or *False*. Write out the word completely; do not simply write *T* or *F*. There is no partial credit for this problem, and it is not necessary to show your work for this problem.
 - (a) (4 pts) The factorials $a_n = n!$ satisfy the recurrence $a_0 = 1$, $a_n = na_{n-1}$ for $n \ge 1$.
 - (b) (4 pts) The generating function $f(x) = 1 + x + x^2 + x^3 + \cdots$ can be written in closed form as 1/(1-x).
 - (c) (4 pts) The Fibonacci numbers can be defined by the recurrence $f_0 = 1$, $f_1 = 2$, and $f_n = 2f_{n-1} + f_{n-2}$ for $n \ge 2$.
 - (d) (4 pts) If $f(x) = \sum_{n\geq 0} a_n x^n$ and $g(x) = \sum_{n\geq 0} b_n x^n$ are formal power series, then their product fg is $\sum_{n\geq 0} c_n x^n$ where $c_n = \sum_{k=0}^n a_k b_{n-k}$.
 - (e) (4 pts) Let a_n be the number of permutations of [n]. Then the exponential generating function for the numbers a_n is given by 1/(1-x).
- (2) (20 pts) A sequence a_n , $n \ge 0$ satisfies $a_n = 3a_{n-1} 2a_{n-2}$ for $n \ge 2$, and $a_0 = 1$, $a_1 = 3$.
 - (a) (5 pts) Compute the sequence up to n=4.
 - (b) (15 pts) Determine an explicit formula for a_n that does not involve a sum.
- (3) (20 pts) A sequence a_n , $n \ge 0$ satisfies $a_n = na_{n-1} n(n-1)a_{n-2}$ for $n \ge 2$, and $a_0 = 1$, $a_1 = 1$.
 - (a) (5 pts) Compute the sequence up to n = 4.
 - (b) (15 pts) Determine an explicit formula for a_n that does not involve a sum.
- (4) (20 pts) At the beginning of the year an artificial pond is built and stocked with 50 frogs. It is expected that each year the population of the frogs will increase to $4\times$ its size by the end of the year, and on the last day of each year 100 frogs are removed to move to a new pond. Let f_n be the population in the original pond after n years have elapsed. Thus $f_0 = 50$, $f_1 = 200 100 = 100$, $f_2 = 300$, and so on.
 - (a) (6 pts) Write a recurrence relation satisfied by the frog population.
 - (b) (7 pts) Give an explicit expression for the generating function $F(x) = \sum_{n>0} f_n x^n$.
 - (c) (7 pts) Give a closed formula for f_n .

- (5) (20 pts) Let $p_k(n)$ be the number of partitions of n into at most k parts. Find an expression for the generating function $\sum_{n>0} p_k(n)x^n$.
- (6) (20 pts) In the kingdom of Atrocia the unit of currency is called the trurl (T). The bills come in denominations of 1T, 3T, 7T, and 15T, and all bills are colored blue.
 - (a) (6 pts) Let t_n be the number of ways to make n trurls using these kinds of bills, drawn from an unlimited supply. We always put $t_0 = 1$. Write an expression for the generating function $G(x) = \sum_{n>0} t_n x^n$.
 - (b) (7 pts) In a special anniversary year, the 3T bills get printed in blue, red, and purple, and the 7T bills get printed in blue and green. Write the generating function for t_n , assuming that color of the bills is taken into account (thus two blue 7T bills to make 14T should be counted as different from two green bills, or a blue and a green bill.)
 - (c) (7 pts) During the anniversary year there was a fire at the treasury and all blue 3T bills and all 15T bills were destroyed. Write the generating function for t_n now.
- (7) (20 pts) We have an infinite supply of 1×1 , 1×2 , and 2×2 rectangles. Let a_n be the number of tilings of a $2 \times n$ rectangle using these tiles, without overlaps. (The 1×2 rectangles can be rotated 90° for a tiling.) Put $a_0 = 1$.
 - (a) (6 pts) Compute a recurrence relation satisfied by the a_n . Check it by explicitly computing a_n for $n \leq 3$ by hand.
 - (b) (10 pts) Find a closed-form expression for the generating function $f(x) = \sum_{n \ge 0} a_n x^n$.
 - (c) (4 pts) Find an explicit expression for a_n that doesn't involve a sum.
- (8) (20 pts) For $n \ge 0$ let Δ_n be the triangle in the plane with vertices (0,0), (n,0), (0,n). Let a_n be the number of points in Δ and on its edges with integer coordinates. We put $a_0 = 1$, and we have $a_1 = 3$ and $a_2 = 6$ (Figure 1).
 - (a) (4 pts) Compute a_n for $n \leq 5$.
 - (b) (4 pts) Give a formula for a_n in terms of n that doesn't involve a sum (it is not necessary to prove your formula, as long as it is correct).
 - (c) (12 pts) Give a closed-form expression for the generating function $f(x) = \sum_{n>0} a_n x^n$.
- (9) (20 pts) Recall that the *derangements* are the sequence $d_n, n \ge 0$ that begins $1, 0, 1, 2, 9, 44, 265, \ldots$ It is known that they satisfy the recursion $d_n = nd_{n-1} + (-1)^n$. Let $f(x) = \sum_{n \ge 0} d_n x^n / n!$.
 - (a) (12 points) Write an explicit closed form expression for f(x) in terms of functions you know. Your answer should not involve a sum.
 - (b) (8 points) Use your expression to derive a formula for d_n (your answer may involve a finite sum).

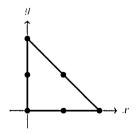


FIGURE 1.

Math 513 /CS STT Fall 25 Exam II Answers

() (a) True (b) True (c) False (doesn't give the correct segmence) (d) True (c) True (c) True (The E6F is 5'an x"/n! and n! = an so we get $E'X_{M}'' = 1/(1-x)$.

(b) 2 solus: 1) use the gruss $a_n = 2^{n+1} - 1$ and use incluchen or 2) use 6Fs. Here is how (2) goes. We larow that he recurrence means f(x)= Eax" substitute $f(x) = P(x)/(1-3x+2x^2)$ nzo so $P(x) = (1-3x+2x^2)(1+3x+7x^2+17x^3+...)$ $= 1 + 0x + 0x^{2} + 0x^{3} + \cdots$

These come there are 0 because from explicit of the recurrence combutation $f(x) = \frac{1}{1-3x+2x^2} = \frac{4}{1-2x} + \frac{8}{1-x}$

by factoring the denom.

(DG) (cont) so then 1 = (1-x)A + (1-2x)Bso $\sum_{n\geq 0}^{\infty} a_n x^n = \frac{2}{1-2x} + \frac{-1}{1-x}$ $= 7(2 \cdot 2^n - 1) \times n$ and $a_n = 2^{n+1} - 1$ $\alpha_n = na_{n-1} - n(n-1) q_{n-2} n22$ $q_0 = q_1 = 1$ $a_2 = 2 \cdot 1 - 2 \cdot 1 \cdot 1 = 0$ $q_3 = 3 \cdot 0 - 3 \cdot 2 \cdot 1 = -6 = -3!$ $a_4 = 4 \cdot (-6) - 4.3 \cdot 0 = -24 = -41$ (a few more ...) $a_r = 5 \cdot (-24) - 5 \cdot 4 \cdot (-6) = 0$ $a_6 = 6 \cdot 0 - 6 \cdot \Gamma \cdot (-24) = 720 = 6!$ $q_4 = 7.720 - 7.6.0 = 5040 = 7!$ (6) again one can use includer or GFs. We shar how to use GFs. (F) This was a typo and was meant

to be plus

Now with the plus sign in the recourser, we would get - x2 and you would get the Fibonacci numbers. But alas we must containe.

where $1-x+x^2=(1-dx)(1-\beta x)$ where $d_1\beta$ are the inverse vorts. using QF the units are $\frac{1\pm\sqrt{1-4}}{2}=\frac{1\pm\sqrt{3}}{2}$ To had morner we compute $\frac{2(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})} = \frac{2(1-\sqrt{-3})}{1+3} = \frac{1-\sqrt{3}}{2}$ and similarly $\frac{2}{(1-F_3)} = \frac{1+\sqrt{5}}{2} \quad \text{so} \quad d = \beta^{-1}, \ d' = \beta$ we put 2=(1+\(\mu_3\)/2, \(\beta=(1-\sqrt_3)/2\). Then we want $\frac{1}{1-x+x^2} = \frac{A}{1-ax} + \frac{B}{1-px}$ so $1 = A(1-\beta x) + B(1-\alpha x)$ plug in $X=\beta^{-1}=\lambda$ and get $B = 1/1-a^2$ $Sim. A = 1/1-\beta^2$ Present we get using () $\sum_{n\geq 0} a_n \frac{x^n}{n!} = \sum_{n\geq 0} (A\alpha^n + B\beta^n) x^n$ and $a_n = n! (A x^n + B \beta^n)$

$$\begin{cases}
7 \\
6 \\
7
\end{cases} = 50, f = 4.50 - 100 = 100 \\
6 \\
7 \\
7 \\
7
\end{cases} = 4.300 - 100 = 100 \\
6 \\
7 \\
7 \\
7
\end{cases} = 4.100 - 100 = 4300 ch.$$

(a) The recurrence is
$$f_n = 4 \cdot f_{n-1} - 100$$

$$f_0 = 50$$

(b)
$$f = \sum_{n\geq 0}^{7} f_n x^n = 50 + \sum_{n\geq 1}^{7} (4f_{n-1} - 100) x^n$$

 $= 50 + 4x \sum_{n\geq 0}^{7} f_n x^n - \sum_{n\geq 0}^{7} 100x^n$
 $= 50 + 4x f - \frac{100x}{1-x}$

and
$$f = \frac{50}{1-4x} - \frac{100x}{(1-x)(1-4x)}$$

(c)
$$\frac{50}{1-4x} = \frac{50 \cdot 4^n \times n}{100 \times 1/-x} = \frac{50 \cdot 4^n \times n}{100 \cdot x^n}$$

we was need
$$\frac{100\times}{(1-x)(1-41)} = \frac{A}{1-x} + \frac{B}{1-4x}$$

$$\begin{array}{l}
(9) & (contld) \\
100 \times = (1-4x)A + (1-x)B \\
& + 8 = 0 \Rightarrow 8 = -A \\
& - 4A - 8 = 100 \\
& - 4A + A = 100 A = -100/3 \\
& + 8 = 100 A = -100/3 \\
& + 100/3 A = 100/3 \\
& + 100/3 A = 100/3 \\
& + 100/3 A = 100/3 A = 100/3 \\
& + 100/3 A = 100/3 A =$$

and the factor 1 = 1+x2+x22+... gives the contribution of the part l.
So it we want at most k parts
we must take the purbut with l & K: $\sum_{n\geq 0} P_{k}(n) x^{n} = \prod_{l=1}^{l} \frac{1}{1-x^{l}}.$ (6) (a) This is the OGF for parkhous where the only allowed parts are 1, 3, 7, 15. So we get Ztnx" = ANDONG-ISR-

 $(-x)(1-x^3)(1-x^7)(1-x^{15})$

6

Men the factor in the GF

Decomer (1-x²) Trenfor the GF is now $\frac{1}{1-x} \cdot \frac{1}{(1-x^3)^3} \cdot \frac{1}{(1-x^7)^2} \cdot \frac{1}{(1-x^{17})}$ Now we have no 15T bills
and only 2 types of 3T bills, so
we get $\frac{1}{1-x} \left(\frac{1-x^3}{1-x^3}\right)^2 \left(\frac{1-x^7}{1-x^7}\right)^2$ (7) was ometted from the exam 8) The margles laste like 3 6 10 1- 21

It is clear that we are getting the binomial coeffs (m) at though we have to make the induing work, our numbus $a_n = \binom{n+2}{2}$ so our OGF is $f = \sum_{n \ge 0} {n+2 \choose 2} x^n$ @ Write f as 1 2 (n+2)(n+1) x h now $(n+2)(n+1) \times n = \frac{d^2}{dx^2} (n+2)$ $f = \frac{1}{2} \left(\frac{d}{dx} \right)^2 \sum_{n \ge 0} x^n$ and since 21 x4 = - 1-x

(8) (cmt'd) we get

$$f = \frac{1}{2} (dx) \frac{1}{1-x}$$

$$= \frac{1}{2} (dx) \frac{1}{1-x}^{2}$$

$$= \frac{1}{2} ($$

$$= 1 + \sum_{n \ge 1} (nd_{n-1} + (-1)^n) \times \frac{n}{n!}$$

$$= 1 + \sum_{n \ge 1} (nd_{n-1} + (-1)^n) \times \frac{n}{n!}$$

$$= 1 + \sum_{n \ge 1} (n-1)! + \sum_{n \ge 1} (-x)^n$$

$$= x + 1 + \sum_{n \ge 1} (-x)^n/n!$$

$$= x + e^{-x}$$

$$\Rightarrow f = e^{-x}/1 - x$$

 $\frac{qq}{\sqrt{20}} = \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{120}} \frac{\sqrt{1}}{\sqrt{120}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{120}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{120}} \frac{\sqrt{1}}{\sqrt{120}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{120}} \frac{\sqrt{1}}{\sqrt{120}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{120}} \frac{\sqrt{1}}{\sqrt{120}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{120}} \frac{\sqrt{1}}{\sqrt{120}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{120}} \frac{\sqrt{1}}{\sqrt{120}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{120}} \frac{\sqrt{1}}{\sqrt{120}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{120}} \frac{\sqrt{1}}{\sqrt{120}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{120}} \frac{\sqrt{1}}{\sqrt{120}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{120}} \frac{\sqrt{1}}{\sqrt{120}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{120}} \frac{\sqrt{1}}{\sqrt{120}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{120}} \frac{\sqrt{1}}{\sqrt{120}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{1}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{1}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{1}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{1}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{1}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \left(\frac{\sqrt{1}}{\sqrt{1}} \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \\
= \left(\frac{\sqrt{1}}{\sqrt{1}} \left(-1 \right)^n x^n \right) \\$

 $\frac{so}{n!} = \sum_{k=0}^{n} \frac{(-1)^k}{k!} \cdot 1$

and $d_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$

This is the formula we got before using Inclusion / Exclusion.